손원혁 한국원자력연구원 첨단양자소재연구실 선임연구원 |
단열팽창을 통한 냉각기술은 1800년대 후반 프랑스 물리학자 카유테(Louis Paul Cailletet)의 우연한 발견을 통해 발전했다. 카유테는 아세틸렌 기체를 액화하기 위해 기계장치의 압력을 높이고 있었는데, 압력을 못 견디고 장치에 작은 구멍이 발생했다. 이 구멍으로 아세틸렌 기체가 빠른 속도로 빠져나가면서 구멍이 아주 차갑게 냉각된 것을 발견한 것이다. 이 발견으로 고압의 기체를 단숨에 팽창시켜 온도를 낮추는 기술을 개발해 산소 액화에 성공했다. 산소의 끓는점이 섭씨 -183도임을 생각하면 실로 엄청난 성과였다.
그 후 냉각기술은 더욱 발전했으며, 1898년 스코틀랜드 물리학자 듀어(James Dewar)는 섭씨 -253도에서 수소 액화에 성공했다. 듀어는 일반 용기를 활용한 단열의 한계를 극복하기 위해 두 겹의 유리 용기를 만들고, 유리 사이를 진공상태로 만들어 전도에 의한 열전달을 최소화했다. 또한 빛을 반사하는 물질을 표면에 발라 복사에 의한 열전달도 차단했다. 어쩌면 우리에게 친숙한 텀블러의 최초 버전이라고 할 수 있다. 이를 통해 듀어는 수소 액화에 성공했으며 수소가 액화된 후에는 헬륨만이 기체로 남아있었다.
극저온 냉각기술이 발전을 거듭하면서 과학계에는 새로운 궁금증이 시작됐다. 온도에 따른 전도체의 저항이 어떻게 변하는가? 당시에는 전도체의 저항은 온도가 낮아질수록 낮아진다는 데는 이견이 없었으나 절대온도 0K(섭씨 -273도) 근처에서의 저항에 대해서는 의견이 분분했다. 당시 극저온에서의 전기저항에 대한 가설은 세 가지였다. 첫째, 전자도 모두 얼기 때문에 전기저항이 무한히 커질 것이다. 둘째, 열에너지에 의한 방해가 없으므로 전기저항이 0으로 내려갈 것이다. 셋째, 열에너지의 방해는 없지만 전자도 얼기 때문에 전기저항이 어떤 유한한 값으로 수렴할 것이다. 하지만 이런 가설들을 검증하기 위해선 절대온도 0K까지 냉각하는 기술이 먼저 필요했다.
1908년, 드디어 헬륨 기체가 네덜란드 물리학자 오네스(Heike Kamerlingh Onnes)에 의해 섭씨 -269도, 절대온도 약 4.2K에서 액화됐다. 오네스는 고압의 헬륨을 액체 공기를 이용해 섭씨 -183도까지 냉각한 후, 액체 수소를 이용해 섭씨 -253도까지 냉각했다. 이후 고압 헬륨 기체를 얇은 관에서 뿜어져 나오게 해 온도를 낮춰 헬륨 액화에 성공한 것이다. 오네스의 헬륨 액화는 냉각기술의 발전을 넘어선 발견으로 이어졌다. 오네스는 극저온에서 전기저항에 대한 가설을 검증하기 위해 금속의 저항을 측정했다. 여러 종류의 금속을 실험한 결과, 수은의 전기저항이 절대온도 4.2K에서 0이 되는 것을 발견했다. 바로 초전도 현상에 대한 최초의 발견이다.
초전도 현상은 다양한 분야에서 사용되고 있다. 비록 매우 극저온에서만 초전도 현상이 나타나기에 쉽게 접할 수 없지만, 강한 자기장을 만드는 기술에 사용된다. 가장 친숙한 예로 자기공명영상장치(MRI)에 초전도 현상을 활용되며 핵자기공명장치(NMR), 입자가속기에도 활용되고 있다. 또한 양자컴퓨터의 큐비트를 만들 때도 초전도 현상이 활용되고 있어, 미래 기술 혁명의 중요한 역할을 담당할 것으로 기대된다. 이렇듯 냉각기술의 발전 과정은 단순해 보이는 기술이 예상치 못한 과학적 발견과 혁신을 만들어 낼 수 있음을 알려준다. 어쩌면 지금은 보잘것없어 보이지만 멀리 보면 엄청난 파급력을 갖춘 기술이 더 있지 않을까? 손원혁 한국원자력연구원 첨단양자소재연구실 선임연구원
중도일보(www.joongdo.co.kr), 무단전재 및 수집, 재배포 금지