합금 촉매는 단일 금속 또는 금속 산화물 촉매에 비해 뛰어난 성능을 보여 연료전지반응이나 탄소계열 공업화학반응에 이용되고 있다. 하지만 합금 촉매 반응의 결과에 대한 근본적인 원리는 자세히 밝혀지지 않아 촉매 연구 과정에서 발생하는 예상치 못한 결과를 설명하기 어려웠다.
연구팀은 문제 해결을 위해 기존의 표면 직접 관찰 기기의 한계점을 크게 개선한 ‘상압 주사 터널링 전자 현미경’과 ‘상압 X-선 광전자분광기’를 활용해 백금-니켈 합금 표면의 역동적인 변화 과정을 관찰했다.
이를 통해 실제 반응 환경에서 백금-니켈 합금 촉매의 반응성 향상 이유가 금속-산화물 계면 나노구조의 표면 형성으로부터 시작됨을 밝혀냈다.
또 일산화탄소 산화반응 과정에서 백금 혹은 니켈 산화물 단일 촉매에 비해 금속-산화물 계면 나노구조가 갖는 비교적 낮은 활성화 에너지는 촉매 반응 원리 상 반응성 향상에 보다 유리한 화학 반응 경로를 제시할 수 있음을 확인했다.
이 결과 밀도범함수 이론을 바탕으로 한 양자역학 모델링 계산 결과를 통해 입증됐다.
박정영 교수는 “초고진공 환경을 기반으로 한 기존의 표면 과학이 풀지 못한 실제 반응 환경에서의 합금 촉매 반응 과정을 직접 관찰한 첫 연구사례다”라고 말했다.
이론적 원리 규명 연구를 주도한 정유성 교수는 “직접 관찰한 양자 계산을 통해 합금 촉매의 주된 활성 자리가 계면임을 규명한 연구로 다양한 합금 촉매의 설계 및 최적화에 중요한 단서가 될 것”이라고 말했다.
상압 표면 분석을 주도한 GIST 문봉진 교수는 “이 연구는 외부의 분자들과 쉴 새 없이 반응하면서 움직이는 마치 살아서 숨 쉬고 있는 원자의 움직임과 반응성을 동시에 측정한 완벽한 표면물리연구”라고 말했다.
이해미 기자 ham7239@
중도일보(www.joongdo.co.kr), 무단전재 및 수집, 재배포 금지